A population of rare fish lives only in one secluded lake. The population follows a logistic growth model, SCORE: /8 PTS
with the total number of fish satisfying the differential equation 4= =1 P(7 - P),

where ¢ is measured in years, and P is measured in thousands of fish.
Answer the following questions without solving algebraically for P(Z) .

[a] If this situation continues indefinitely (“forever”), what will be the ultimate population of fish in the lake ?
Specify the units of your answer.
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[b) A fishing club has discovered the lake, and are removing the fish at a rate of 3000 fish per year.
[i] Write a differential equation for the total number of fish in this new situation.
Jedvealin
(D= = hEaE) =
e {

i

L (cP el
= =3(P -7p+L) = - 4(PEINR-L)

[ii] What is the minimum number of fish that must initially be in the lake
in order to prevent the population from going extinct in this new situation ?
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[iii] If this new situation continues indefinitely (“forever”) without the population going extinct,
what will be the ultimate population of fish in the lake ?
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A 1600 liter tank initially holds 400 liters of brine containing 5 grams of salt per liter. SCORE: /22 PTS
Brine containing 2 grams of salt per liter starts flowing into the tank at 12 liters per minute.
At the same time, the well-mixed solution leaves the tank at 4 liters per minute.

[a] Find the amount of salt in the tank / minutes after the less concentrated brine starts to enter the tank

(but before the tank starts to overflow). HINT: Simplify all fractions as soon as possible.
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[b] Find the concentration of salt in the tank at the instant the tank starts to overflow.
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[c] Without referring to the differential equation you wrote in [a], explain why your answer in [b] is reasonable.

Your answer may involve any numbers from the original description of the situation.
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[d] Write, but do NOT solve, an initial value problem for the amount of salt in the tank ¢ minutes after the tank starts to overflow.
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